Abstract

The starting point for the present investigations was the finding that increasing influent concentrations from 10 to 380 mmol/L glucose decreased the attainable growth rate of an acidogenic population in continuous culture from 0.52 to 0.05 h(-1) To account for this phenomenon, a new kinetic model is developed that combines substrate and product inhibition. Both effects are connected through the product yield, giving rise to a complex dependency of the growth rate on the substrate concentration. As a main feature, the maximum attainable growth rate decreases almost hyperbolically above some optimal substrate concentration in the influent. Furthermore, under certain conditions the kinetic model predicts the existence of three steady states: a high-conversion and a low-conversion state that are both stable and a metastable intermediate state. The latter states from the multiple-steady-state region are to be avoided, and eventual transitions to these states may have important consequences for the stability and the operation of such reaction systems. Substrate as well as product inhibition is reported for Propionibacterium freundenreichii and recently could be demonstrated for the above-mentioned acidogenic population. The proposed model allows optimization of anaerobic wastewater treatment processes and is applicable also to other fermentations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.