Abstract

Complex heterogeneous catalytic processes involving strongly chemisorbed particles (SCPs) are considered: syntheses of methanol, pyrocatechol, and diphenylamine and hydrogenation of CO and benzene. Nonstationary transformations of SCPs (CO and benzene) during continuous analysis of the gas phase are studied with mass spectrometric, flame ionization and thermal conductivity detectors. It is shown that the adsorption substitution reaction (ASR) proceeds before catalysis under typical conditions of these processes; in other words, the substitution reaction, rather than Langmuir adsorption equilibrium, determines the composition of reactive species on the catalyst surface. Consequently, ASRs and chemical transformations of SCPs must be considered for kinetic description of heterogeneous catalytic processes. It is shown that the ASRs allow us to describe these catalytic processes simply and adequately, and the obtained models can be used for the regulation and optimization of processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.