Abstract

This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.