Abstract
Ion selectivity coefficients of ion-selective electrodes based on neutral carriers are described by means of a mixed potential model of ion transport reactions at the aqueous solution/ion-sensitive membrane interface. The decrease in ion selectivity can be explained by the deviations from the equilibrium conditions, which arise from the ionic partial current across the interface, but the proposed correspondence of the exchange current density of ion transfer reactions with the ion selectivity coefficients is rationalized only for certain conditions of the kinetic parameters. The ion selectivity for liquid membrane transport is discussed starting from three different rate-determining steps. It is shown that the potentiometric selectivities of ion-selective electrodes and the transport selectivities are correlated when the ionic transfer across the aqueous solution/ membrane interface is fast compared with the complex ion transport through the membrane. The significance of a kinetic approach for the design of neutral carriers for ion-selective electrodes is stressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.