Abstract

Prussian Blue-modified graphite electrodes (G/PB) with electrocatalytic activity toward H2O2 reduction were obtained by PB potentiostatic electrodeposition from a mixture containing 2.5 mm FeCl3 + 2.5 mm K3[Fe(CN)6] + 0.1 m KCl + 0.1 m HCl. From cyclic voltammetric measurements, performed in KCl aqueous solutions of different concentrations (5 × 10−2–1 m), the rate constant for the heterogeneous electron transfer (k s) was estimated by using the Laviron treatment. The highest ks value (10.7 s−1) was found for 1 m KCl solution. The differences between the electrochemical parameters of the voltammetric response, as well as the shift of the formal potential, observed in the presence of Cl− and NO 3 − compared to those observed in the presence of SO 4 2− ions, points to the involvement of anions in the redox reactions of PB. The G/PB electrodes showed a good electrochemical stability proved by a low deactivation rate constant (0.8 × 10−12 mol cm2 s−1). The electrocatalytic efficiency, estimated as the ratio $$(I_{cat})_{H_2 O_2 } /(I_{cat})$$ , was found to be 3.6 (at an applied potential of 0 mV vs. SCE; Γ = 5 × 10−8 mol cm−2) for a H2O2 concentration of 5 mm, thus indicating G/PB electrodes as possible H2O2 sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call