Abstract
Extensive evidence suggests that the self-assembly of amyloid-beta peptide (Aβ) is a nucleation-dependent process that involves the formation of several oligomeric intermediates. Despite neuronal toxicity being recently related to Aβ soluble oligomers, results from aggregation studies are often controversial, mainly because of the low reproducibility of several experimental protocols. Here a multimethodological study that included atomic force microscopy (AFM), transmission electron microscopy (TEM), fluorescence microscopy (FLM), mass spectrometry techniques (matrix-assisted laser desorption/ionization time-of-flight [MALDI–TOF] and electrospray ionization quadrupole time-of-flight [ESI–QTOF]), and direct thioflavin T (ThT) fluorescence spectroscopy were enabled to set up a reliable and highly reproducible experimental protocol for the characterization of the morphology and dimension of Aβ 1–42 (Aβ42) aggregates along the self-assembly pathway. This multimethodological approach allowed elucidating the diverse assembly species formed during the Aβ aggregation process and was applied to the detailed investigation of the mechanism of Aβ42 inhibition by myricetin. In particular, a very striking result was the molecular weight determination of the initial oligomeric nuclei by MALDI–TOF, composed of up to 10 monomers, and their morphology by AFM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.