Abstract

Peroxidases catalyze the reduction of H(2)O(2) by taking electrons from a variety of compounds from the secondary metabolism including flavonoids and lignin precursors. This work describes the purification and kinetic characterization of a basic peroxidase from garlic cloves using quercetin and p-coumaric acid, flavonoid and phenolic compounds found in garlic cloves. The high catalytic efficiency shown by this basic peroxidase in the oxidation of quercetin at acidic pH suggests good adaptation of this enzyme, involved in quercetin catabolism in the acidic physiological pH conditions of the vacuoles, where it is presumably located. Likewise, garlic peroxidase showed similar oxidation rates for hydroxycinnamyl (p-coumaric) and sinapyl-type structures, which suggests its involvement in the cross-coupling reactions that occur in the cell wall during lignification. On the other hand, the high affinity of this enzyme for H(2)O(2) would be in accordance with the oxidation of both flavonoid and phenolic compounds to regulate H(2)O(2) levels in tissues/organelles, where this peroxidase is expressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.