Abstract

We propose kinetic capillary electrophoresis (KCE) as a conceptual platform for the development of kinetic homogeneous affinity methods. KCE is defined as the CE separation of species that interact during electrophoresis. Depending on how the interaction is arranged, different KCE methods can be designed. All KCE methods are described by the same mathematics: the same system of partial differential equations with only initial and boundary conditions being different. Every qualitatively unique set of initial and boundary conditions defines a unique KCE method. Here, we (i) present the theoretical bases of KCE, (ii) define four new KCE methods, and (iii) propose a multimethod KCE toolbox as an integrated kinetic technique. Using the KCE toolbox, we were able to, for the first time, observe high-affinity (specific) and low-affinity (nonspecific) interactions within the same protein-ligand pair. The concept of KCE allows for the creation of an expanding toolset of powerful kinetic homogeneous affinity methods, which will find their applications in studies of biomolecular interactions, quantitative analyses, and selecting affinity probes and drug candidates from complex mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.