Abstract

ABSTRACTDuring ordering process, anti-site ordering proceeds in atomistic scale and anti-phase domain structure evolves in microstructural scale. In order to describe both the processes, a hybridized calculation of the Phase Field Method(PFM) and Cluster Variation Method(CVM) is attempted. The main objective of the present study is focused on the time evolution of atomic configuration during L10 ordering processes below and above the spinodal ordering temperature and their resultant microstructures. In order to investigate the interplay between atomistic and microstructural processes, we conducted two types of calculations. One is for a homogeneous system without an anti-phase boundary and the other is for an inhomogeneous system in which microstructure is formed by anti-phase domains.For the homogeneous system, the relaxation curve of Long-Range-Order parameter(LRO) indicates a transient appearance of an L12-like atomic configuration below the spinodal ordering temperature. Such an L12–like state corresponds to a saddle point configuration in the CVM free energy surface. When the composition of an alloy is located near L10 + L12 phase field in the phase diagram, the L12–like phase becomes highly ordered state.For the inhomogeneous system, it is implied that the appearance of the L12-like phase affects the resultant microstructure by providing the nucleation sites for the L10 ordered phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.