Abstract

We study theoretically the size distributions of nanoparticles (islands, droplets, nanowires) whose time evolution obeys the kinetic rate equations with size-dependent condensation and evaporation rates. Different effects are studied which contribute to the size distribution broadening, including kinetic fluctuations, evaporation, nucleation delay, and size-dependent growth rates. Under rather general assumptions, an analytic form of the size distribution is obtained in terms of the natural variable s which equals the number of monomers in the nanoparticle. Green's function of the continuum rate equation is shown to be Gaussian, with the size-dependent variance. We consider particular examples of the size distributions in either linear growth systems (at a constant supersaturation) or classical nucleation theory with pumping (at a time-dependent supersaturation) and compare the spectrum broadening in terms of s versus the invariant variable ρ for which the regular growth rate is size independent. For the growth rate scaling with s as s^{α} (with the growth index α between 0 and 1), the size distribution broadens for larger α in terms of s, while it narrows with α if presented in terms of ρ. We establish the conditions for obtaining a time-invariant size distribution over a given variable for different growth laws. This result applies for a wide range of systems and shows how the growth method can be optimized to narrow the size distribution over a required variable, for example, the volume, surface area, radius or length of a nanoparticle. An analysis of some concrete growth systems is presented from the viewpoint of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.