Abstract

After much development of stationary phase chemistry, in recent years the focus of many studies in HPLC has shifted to increase the efficiency and analysis speed. Ultra high pressure liquid chromatography (UHPLC) using sub-2 μm particles, and high temperature liquid chromatography (HTLC), using temperatures above 100 °C have received much attention. These new approaches allow the use of flow rates higher than those classically used in HPLC, reducing the analysis duration. Due to the low viscosity of supercritical fluids, high velocities, i.e. high flow rates, can be achieved with classical pumping systems typically used in supercritical fluid chromatography (SFC). The effects of the flow rate increase with CO 2/methanol mobile phase was studied on the inlet pressure, t 0, the retention factor of the compounds, and on the efficiency. Simple comparisons of efficiencies obtained at varied temperature between SFC and HPLC, with a packed column containing 5 μm particles, show the greater kinetic performances achieved with the CO 2/methanol fluid, and underline specific behaviours of SFC, occurring for high flow rates and sub-ambient temperature. Some values ( N/ t 0) are also compared to UHPLC data, showing that good performance can be achieved in SFC without applying drastic analytical conditions. Finally, simple kinetic plots ( t 0 vs N) at constant column length are used to select combinations of temperature and flow rate necessary to achieve a required theoretical plate number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.