Abstract
AbstractSummary: The reaction behavior and kinetics of the atom transfer radical polymerization (ATRP) of poly(ethylene glycol) dimethacrylates (PEGDMA) were studied with respect to polymerization rate, vinyl conversion and the development of a crosslinked network. The polymerization rates were much slower than the corresponding conventional free radical polymerizations with the ATRP systems exhibiting milder autoacceleration. The linear relationship of the semi‐logarithmic kinetic plot of ln([M]0/[M]) vs. time did not provide good evidence for any living nature of the system because of the combined effects of diffusion controlled radical deactivation and diffusion controlled monomer propagation. The influence of the spacer length (CH2CH2O)x between the vinyl moieties of the dimethacrylates on the polymerization kinetics was examined. The polymerization rate and final vinyl conversion increased as value of x decreased from 14 to 9 to 4. These increases in rate and conversion were caused by a more rigid network structure with shorter spacer lengths, and thus more restricted diffusion of the catalyst/ligand complexes that impeded the radical deactivation. The effect of temperature on the polymerization rate and final vinyl conversion were also investigated.Apparent rate constants versus vinyl conversions for the ATRP of PEGDMA with the different spacer lengths at 100 °C.magnified imageApparent rate constants versus vinyl conversions for the ATRP of PEGDMA with the different spacer lengths at 100 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.