Abstract

The single-channel blocking kinetics of tetrodotoxin (TTX), saxitoxin (STX), and several STX derivatives were measured for various Na-channel subtypes incorporated into planar lipid bilayers in the presence of batrachotoxin. The subtypes studied include Na channels from rat skeletal muscle and rat brain, which have high affinity for TTX/STX, and Na channels from denervated rat skeletal muscle and canine heart, which have about 20-60-fold lower affinity for these toxins at 22 degrees C. The equilibrium dissociation constant of toxin binding is an exponential function of voltage (e-fold per 40 mV) in the range of -60 to +60 mV. This voltage dependence is similar for all channel subtypes and toxins, indicating that this property is a conserved feature of channel function for batrachotoxin-activated channels. The decrease in binding affinity for TTX and STX in low-affinity subtypes is due to a 3-9-fold decrease in the association rate constant and a 4-8-fold increase in the dissociation rate constant. For a series of STX derivatives, the association rate constant for toxin binding is approximately an exponential function of net toxin charge in membranes of neutral lipids, implying that there is a negative surface potential due to fixed negative charges in the vicinity of the toxin receptor. The magnitude of this surface potential (-35 to -43 mV at 0.2 M NaCl) is similar for both high- and low-affinity subtypes, suggesting that the lower association rate of toxin binding to toxin-insensitive subtypes is not due to decreased surface charge but rather to a slower protein conformational step. The increased rates of toxin dissociation from insensitive subtypes can be attributed to the loss of a few specific bonding interactions in the binding site such as loss of a hydrogen bond with the N-1 hydroxyl group of neosaxitoxin, which contributes about 1 kcal/mol of intrinsic binding energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.