Abstract

A kinetic model is derived for the propagation of low-frequency waves in a dusty plasma containing very heavy dust particles, when the self-gravitational interaction due to these grains is included in the analysis. Analytical expressions for the dispersion function are used to examine the instability and damping of the modes. The stability regions of low-frequency waves are compared in the kinetic and the analogous hydrodynamic models, showing that there are only slight differences. However, the kinetic analysis modifies the growth rates of the Jeans instability and can considerably alter the conditions for the propagation of stable dust modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call