Abstract
Pyrolysis kinetics of finger millet straw (FMS) was studied using a thermogravimetric analyzer under N2 environment. Physico-chemical characteristics of FMS were comparable with the established pyrolysis feedstocks. FMS thermally decomposed in three stages: drying, active pyrolysis, and char formation resulting in 70.37% overall weight loss. Average activation energy determined by Friedman and Starink methods was 177.80 and 172.18 kJ mol−1, respectively. Frequency factor was found to be in the range of 108 to 1029. Reaction pathway followed diffusion, nucleation, and order-based mechanisms. The pyrolysis of FMS was characterized by empirical modeling and predicted well with model adequacy of 97.55%. Thermodynamic parameters (ΔG and ΔH) revealed the non-spontaneous and endothermic nature of FMS pyrolysis. The biochar obtained at multiple heating rates were characterized for its physicochemical, functional, and morphological characteristics. The kinetic and thermodynamic analyses illustrate the feasibility of exploiting finger millet straw as a pyrolysis feedstock to derive biofuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.