Abstract

Atropisomeric aromatic amides bearing 2-sulfanyl groups are oxidised by m-CPBA to the corresponding sulfoxides apparently with very high diastereoselectivity. NMR studies and oxidations of chiral benzamides however indicate that the kinetic selectivity of the oxidation is in fact relatively poor, and that the final diastereoisomeric ratio (typically >99:1) is under thermodynamic control, with relatively unhindered Ar-CO rotation readily converting the less stable to the more stable product diastereoisomer. Molecular mechanics indicates that the thermodynamic diastereoselectivity results principally from electrostatic repulsion between the C=O and S-O dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.