Abstract
A novel composite adsorbent, magnetite/hydroxyapatite (Fe3O4/HAP) composites, was prepared by biowaste chicken eggshell for the purpose of removing radiocobalt from aqueous solutions. It highlighted that more than 92% Co(II) could be removed by using the developed composites under the experimental conditions. The maximum sorption capacity of Co(II) on Fe3O4/HAP composites was 6.9 × 10−4 mol/g. The coexisted foreign ions, e.g., ClO4 −, NO3 −, Cl−, Na+ and K+, did not interfere the elimination of Co(II) from aqueous solutions, while Mg2+ did. The sorption process was found to be controlled well by pseudo-second-order and intra-particle diffusion models, and the equilibrium data were simulated by Langmuir model very well with high correlation coefficients. The thermodynamic parameters confirmed the spontaneity and endothermic nature of Co(II) sorption processes. After sorption, the Fe3O4/HAP composites could be effectively and fleetly separated from aqueous solutions by magnetic separation technique in large scale. The Fe3O4/HAP composites are suitable materials in the preconcentration of Co(II) from large volumes of aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.