Abstract

The Li/Li+ couple is investigated in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C4mpyrr][NTf2], at a range of temperatures varying from 298 to 318 K.Experiments are conducted using both nickel and platinum microelectrodes. On nickel, a single stripping peak is observed for the stripping of bulk lithium that allowed thermodynamic and kinetic parameters to be extracted via computational simulation. At 298 K, the electrochemical rate constant (k0) ) 1.2 X 10-5 cms-1, the diffusion coefficient (D) ) 4.5 X 10-8 cm2 s-1, the formal potential (E(f)0 ) -3.26 V versus the Fc/Fc+ reference couple, and the transfer coefficient (alpha) = 0.63. On platinum, multiple stripping peaks are observed due to the stripping of Li-Pt alloys in addition to the stripping of bulk lithium. The ratio of the different stripping peaks is found to change with temperature, indicating that Li-Pt alloys are more thermodynamically stable than pure bulk lithium and platinum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.