Abstract

It is a promising method for hydrogen generation without carbon emitting by ammonia decomposition in a catalytic palladium membrane reactor driven by solar energy, which could also store and convert solar energy into chemical energy. In this study, kinetic and thermodynamic analyses of mid/low-temperature solar thermochemical ammonia decomposition for hydrogen generation in membrane reactor are conducted. Hydrogen permeation membrane reactor can separate the product and shift the reaction equilibrium forward for high conversion rate in a single step. The variation of conversion rate and thermodynamic efficiency with different characteristic parameters, such as reaction temperature (100–300 °C), tube length, and separation pressure (0.01–0.25 bar), are studied and analyzed. A near-complete conversion of ammonia decomposition is theoretically researched. The first-law thermodynamic efficiency, net solar-to-fuel efficiency, and exergy efficiency can reach as high as 86.86%, 40.08%, and 72.07%, respectively. The results of this study show the feasibility of integrating ammonia decomposition for hydrogen generation with mid/low-temperature solar thermal technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call