Abstract

The enzyme alpha-amino-beta-carboxy-muconic-epsilon-semialdehyde decarboxylase (ACMSD) plays an important role in the biodegradation of 2-nitrobenzoic acid in microorganisms and in tryptophan catabolism in humans. We report that the overexpressed ACMSD enzyme from Pseudomonas fluorescens requires a divalent metal, such as Co(II), Fe(II), Cd(II), or Mn(II), for catalytic activity and that neither a redox reagent nor an organic cofactor is required for the catalytic function. The metal ions can be taken up in either cell or cell-free preparations for generating the active form of ACMSD. The kinetic parameters and enzyme specific activity are shown to depend on the metal ion present in the enzyme, suggesting a catalytic role of the metal center. EPR spectrum of Co(II)-ACMSD provides a high-spin (S = 3/2 mononuclear metal ion in a non-heme, noncorrinoid environment with a mixed nitrogen/oxygen ligand field. We observe hyperfine interactions due to 59Co nucleus at temperatures below 5 K but not at higher temperatures. Ten hyperfine lines are present in the g(perpendicular) region, and three equivalent nitrogen hyperfine couplings are required to simulate the resonances in the EPR spectrum. The results for the metal binding site are also assessed using the copper-substituted enzyme, and the EPR spectral assignments for both cobalt and copper proteins give strong support for a distorted trigonal bipyramidal geometry of the metal center. Ultimately, these results suggest for the first time that ACMSD is a metal-dependent enzyme that catalyzes a novel nonoxidative decarboxylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.