Abstract
1. gamma-Aminobutyric acid (GABA) was applied by the 'concentration clamp' technique to isolated neurones of Aplysia. GABA induced a chloride current (ICl) due to activation of a single class of chloride-channel. 2. The concentration-response curve for the peak ICl gave an apparent dissociation constant of 6.4 X 10(-5) M and a Hill coefficient of 0.88. The current-voltage relationship was linear in the voltage range examined (-40 to +10 mV). 3. The activation phase of the ICl could be fitted to a single exponential function and desensitization followed the sum of two exponential functions. The time constants of activation and desensitization decreased with increasing concentrations of GABA but were voltage-independent. The recovery process from desensitization also followed the sum of two exponential functions. 4. As for the rate-limiting step of the channel activation, the hyperbolic relationship between the activation rate and GABA concentration showed that the rapid binding assumption holds, suggesting that the isomerization step is rate-limiting. The apparent channel closing rate constant was estimated to be 10 s-1 from the ordinate intercept of the linear part of the above relationship at lower concentrations. 5. Muscimol and beta-alanine induced a ICl, which cross-desensitized with that evoked by GABA. The GABA-ICl was not enhanced by diazepam (10(-6) M) or alpha-chloralose (10(-3) M), in fact depressant effects were evident. 6. Pentobarbitone decreased the GABA-ICl non-competitively without altering activation or desensitization kinetics. The concentration-inhibition curve gave a KD value of 8.9 x 10(-5) M and a Hill coefficient of 1.0. 7. These results suggest that GABA activates a single class of Cl channel in Aplysia neurones, which have one binding site for the agonist. The GABA receptor-Cl channel complex in Aplysia is pharmacologically and perhaps structurally different from that in vertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.