Abstract

The process to manufacture sotorasib (AMG 510) employs a Suzuki–Miyaura reaction as a key step in the synthetic sequence. Detailed kinetic and mechanistic investigations into this process were utilized to identify the active catalytic species and rate-determining step, rationalizing current procedural requirements and process limitations. This knowledge was applied to demonstrate that simple alteration of the base (from KOAc to K2CO3) provided significant process improvements by shifting the rate-determining step and transmetalation pathways. Kinetic modeling was utilized for parameter optimization and resulted in significant reductions in both the Pd catalyst loading and equivalents of boronic acid as well as removing the requirement for slow reagent dosing. This report highlights the distinct mechanistic pathways that may occur upon alteration of the base in Suzuki–Miyaura coupling reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.