Abstract
The substitution reaction of trans-[Rh(Cl)(CO)(SbPh3)2] (1) with tris(2,4-di-tert-butylphenyl)phosphite (2,4-TBPP) to form trans-[Rh(Cl)(CO)(2,4-TBPP)2] (4) in two consecutive steps has been investigated by UV-vis stopped-flow spectrophotometry. The experiments were performed in dichloromethane and in ethyl acetate, at 298 K and 268 K respectively for the first reaction step, and for the second reaction step over a temperature range from 278 to 313 K in both solvents. The first step is very fast (up to 1630 s(−1)) and on the limit of what is observable with the stopped-flow technique. Introduction of the five-coordinate complex trans-[Rh(Cl)(CO)(SbPh3)3] (2) in equilibrium with (1), by adding an excess SbPh3, led to a significant decrease in overall reaction rate for the formation of the intermediate trans-[Rh(Cl)(CO)(SbPh3)2(2,4-TBPP)] (3). Activation parameters for the second substitution reaction, in which 3 is converted to 4, has been determined as ΔH‡ = 22.85 ± 0.17 and 28.38 ± 0.10 kJ mol(−1) and ΔS‡ = −144.7 ± 0.6 and −100.9 ± 0.4 J mol(−1) K(−1) for CH2Cl2 and EtOAc respectively, supporting an associative pathway. A strongly coordinating solvent promotes both reactions. In all reaction steps a strong tendency for stibines to promote 5-coordinated, fairly stable intermediates is manifested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.