Abstract

Triphenylmethyl salts of the very weakly-coordinating borate anions [CN{B(C6F5)3}2]− (1), [H2N{(C6F5)3}2]− and [M{CNB(C6F5)3}4]2− (M = Ni, Pd) have been prepared in simple one-pot reactions. Mixtures of (SBI)ZrMe2/1/AlBu3i (SBI = rac-Me2Si(Ind)2) are 30–40 times more active in ethylene polymerizations at 60–100°C than (SBI)ZrCl2/MAO. The quantification of anion effects on propene polymerization activity at 20°C gives the order [CN{B(C6F5)3}2]− > [H2N{(C6F5)3}2]− ≈ B(C6F5)4− ≫ [MeB(C6F5)3]−. The highest productivities were of the order of ca. 3.0 × 108 g PP (mol Zr)−1 h−1 [C3H6]−1, about 1.3–1.5 times higher than with B(C6F5)4− as the counter anion. The titanium system CGCTiMe2/1/AlBu3i gave activities that were very similar to the zirconocene catalyst. The concentration of active species [C*] as determined by quenched-flow kinetic techniques indicates typical values of around 10%, independent of the counter anion, for both the borate and MAO systems. Pulsed field-gradient spin echo and nuclear Overhauser effect NMR experiments on systems designed to be more realistic models for active species with longer polymeryl chains, (SBI)M(CH2SiMe3)(μ-Me)B(C6F5)3 and [(SBI)MCH2SiMe3+...B(C6F5)4−] (M = Zr, Hf), demonstrated the influence of bulky alkyl chains on the ion pair solution structures: while the MeB(C6F5)3 compound exists as a simple inner-sphere ion-pair, the B(C6F5)4− compound is an outer-sphere ion pair (OSIP), a consequence of the relegation of the anion into the second coordination sphere by the γ-agostic interaction with the alkyl ligand. The OSIP aggregates to ion hextuples (10 mM) or quadruples (2 mM). Implications for the polymerization mechanism are discussed; the process follows an associative interchange (Ia) pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.