Abstract

The X-ray structure of staphylococcal nuclease suggests octahedral coordination of the essential Ca2+, with Asp-21, Asp-40, and Thr-41 of the enzyme providing three of the six ligands [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555]. The Asp-40 codon was mutated to Gly-40 on the gene that had been cloned into Escherichia coli, and the mutant (D40G) and wild-type enzymes were both purified from E. coli by a simple procedure. The D40G mutant forms a (5 +/- 2)-fold weaker binary complex with Ca2+ as found by kinetic analysis and by Ca2+ binding studies in competition with Mn2+, a linear competitive inhibitor. Similarly, as found by electron paramagnetic resonance (EPR), Mn2+ binds to the D40G mutant with a 3-fold greater KD than that found with the wild-type enzyme. These differences in KD are increased by saturation of staphylococcal nuclease with the DNA substrate such that KmCa is 10-fold greater and KIMn is 15-fold greater for the mutant than for the wild-type enzyme, although KMDNA is only 1.5-fold greater in the mutant. The six dissociation constants of the ternary enzyme-Mn2+-nucleotide complexes of 3',5'-pdTp and 5'-TMP were determined by EPR and by paramagnetic effects on 1/T1 of water protons, and the dissociation constants of the corresponding Ca2+ complexes were determined by competition with Mn2+. Only small differences between the mutant and wild-type enzymes are noted in K3, the dissociation constant of the nucleotides from their respective ternary complexes. 3',5'-pdTp raises the affinities of both wild-type and mutant enzymes for Mn2+ by factors of 47 and 31, respectively, while 5'-TMP raises the affinities of the enzymes for Mn2+ by smaller factors of 6.8 and 4.4, respectively. Conversely, Mn2+ raises the affinities of both wild-type and mutant enzymes for the nucleotides by 1-2 orders of magnitude. Analogous effects are observed in the ternary Ca2+ complexes. Dissociation constants of Ca2+ and Mn2+ from binary and ternary complexes, measured by direct binding studies, show reasonable agreement with those obtained by kinetic analysis. Structural differences in the ternary metal complexes of the D40G mutant are revealed by a 31-fold decrease in Vmax with Ca2+ and by 1.4-3.1-fold decreases in the enhancement of 1/T1 of water protons with Mn2+.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call