Abstract

Light lower-limb wearable resistance has little effect on running biomechanics. However, asymmetrical wearable resistance may potentially alter the kinetics and kinematics of high speed, enabling greater loading or unloading of an injured or rehabilitative lower limb. A cross-sectional study design was used to quantify the influence of asymmetric calf loading on the kinematics and kinetics during 90% maximum sprinting velocity. Following a familiarization session, 12 (male = 7 and female = 5) physically active volunteers ran at 90% of maximal velocity. In random order, participants ran with zero (0) wearable resistance and with loads of 300g (L300) and 600g (L600) fixed to one shank. A nonmotorized treadmill quantified vertical and horizontal kinetics and step kinematics. The kinetics and kinematics of the loaded (L0, L300, and L600) and unloaded (UL; UL0, UL300, and UL600) limbs were compared. Vertical step ground reaction force of the loaded limb tended to increase between unloaded and 300 and 600 conditions (effect size [ES] = 0.48 to 0.76, all P ≤ .12), while the horizontal step force of the UL tended to decrease (ES = 0.54 to 1.32, all P ≤ .09) with greater external loading. Step length increased in the UL in 0 versus 300 and 600 conditions (ES = 0.60 to 0.70, all P ≤ .06). Step frequency decreased in the ULs in unloaded versus 300 and 600 conditions (ES = 0.73 to 1.10, all P ≤ .03). Mean step velocity tended to be greater in the ULs than the 300 and 600 conditions (ES = 0.52 to 1.01, all P ≤ .10). Only 4 of 16 variables were significantly different between the 300 and 600 conditions. Asymmetrical shank resistance could be used during high-speed running to reduce or increase the kinetic loading of an injured/rehabilitative limb during return to play protocols. Asymmetrical wearable resistance could also be used to alter step kinematics in runners with known asymmetries. Finally, meaningful alterations in high-speed running biomechanics can be achieved with only 300g of shank loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call