Abstract

BackgroundIn order to improve training performance, as well as avoid overloading during prevention and rehabilitation exercises in patients, the aim of this study was to understand the biomechanical differences in the knee, hip and the back between the exercises “Goodmornings” (GMs) and “Deadlifts” (DLs).MethodsThe kinetics and kinematics of 13 subjects, performing GMs and DLs with an additional 25% (GMs), 25% and 50% (DLs) body weight (BW) on the barbell were analysed. Using the kinetic and kinematic data captured using a 3D motion analysis and force plates, an inverse approach with a quasi-static solution was used to calculate the sagittal moments and angles in the knee, hip and the trunk. The maximum moments and joint angles were statistically tested using ANOVA with a Bonferroni adjustment.ResultsThe observed maximal flexion angle of the knee was 5.3 ± 6.7° for GMs and 107.8 ± 22.4° and 103.4 ± 22.6° for DLs with 25% and 50% BW respectively. Of the hip, the maximal flexion angle was 25% smaller during GMs compared to DLs. No difference in kinematics of the trunk between the two exercises was observed. For DLs, the resulting sagittal moment in the knee was an external flexion moment, whereas during GMs an external extension moment was present. Importantly, no larger sagittal knee joint moments were observed when using a heavier weight on the barbell during DLs, but higher sagittal moments were found at the hip and L4/L5. Compared to GMs, DLs produced a lower sagittal moment at the hip using 25% BW while generating the same sagittal moment at L4/L5.ConclusionsThe two exercises exhibited different motion patterns for the lower extremities but not for the trunk. To strengthen the hip while including a large range of motion, DLs using 50% BW should be chosen. Due to their ability to avoid knee flexion or a knee flexion moment, GMs should be preferentially chosen over DLs as ACL rupture prevention exercises. Here, in order to shift the hamstring to quadriceps ratio towards the hamstrings, GMs should be favoured ahead of DLs using 50% BW before DLs using 25% BW.

Highlights

  • In order to improve training performance, as well as avoid overloading during prevention and rehabilitation exercises in patients, the aim of this study was to understand the biomechanical differences in the knee, hip and the back between the exercises “Goodmornings” (GMs) and “Deadlifts” (DLs)

  • Due to the fact that the DL is a closed chain exercise [5], it is often used in the prevention of and rehabilitation after anterior cruciate ligament (ACL) reconstruction to improve strength of the muscular structures that surround the knee and dynamic stability of the joint [6,7,8]

  • No changes in the maximal knee and hip angles or their corresponding RoMs were found between the loading conditions with 25% and 50% body weight (BW) during DLs

Read more

Summary

Introduction

In order to improve training performance, as well as avoid overloading during prevention and rehabilitation exercises in patients, the aim of this study was to understand the biomechanical differences in the knee, hip and the back between the exercises “Goodmornings” (GMs) and “Deadlifts” (DLs). The biomechanics of the lift have been studied extensively during competition, focusing on the sumo and conventional styles [1,6,9], where the maximal isometric forces in four different positions during DLs were shown to result in a higher potential to increase the force toward the end of the DL (from 3380 to 5829 N) [10] Training using these exercises has been clearly related to functional adaptation of the spine, where the annual lifted loads of power-lifters has been shown to correlate with the bone mineral content in L3 [11]. No statistically significant differences were found in this study between the kinematics of high and low-skilled lifters, but they did show differences regarding how the barbell passed the knee: Highly skilled lifters kept the barbell mass closer to the body than less-skilled lifters

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.