Abstract
In the recent years tremendous progress has been achieved in deconstructing the oil biosynthetic pathways, majority of which is in Arabidopsis. Glycolysis is fundamental to this process as it is the cardinal supplier of precursors for fatty acid metabolism. Recent reports suggest that modification and expression of pyruvate kinase (PK), a crucial regulatory enzyme involved in glycolysis is one of the plausible ways to alter seed oil content in plants. In the present study we evaluated the kinetic behavior and expression profiling of pyruvate kinase, associated with seed development in a major oilseed crop B. juncea. Developmental profiling of the enzyme showed that enzyme activity was highest during middle stage (35 DAF) of seed development which is strongly corroborated by the expression profiling of the enzyme using RT-PCR approach. Oil accumulation pattern also correlated with the enzyme expression study. Comparative activity profiling from different tissues showed seedlings to have elevated activity than other tissues. For kinetic characterization, the enzyme was partially purified by 12.3 fold using DEAE-Sephadex column and showed a narrow pH optimum of 7.0. In presence of saturated substrate concentration, the enzyme exhibited hyperbolic kinetics for both ADP and PEP with Km (Michaelis constant value) for PEP and ADP was found to be 178.5 and 96.45 μM respectively. ATP and citrate are the most significant allosteric effectors of the partially purified PK. Study on isozymes of PK resulted in a single band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.