Abstract

The current study aimed to investigate the viability and characteristics of Scenedesmus sp. as an adsorbent system to remove lead (Pb) and cadmium (Cd) through an in vitro exposure to a metal solution. In batch sorption experiments, the effects of pH, contact time, initial concentration of metal ions, and sorbent dosage on the adsorption process were trialed. The ideal biosorption conditions for each of the two metals were recorded. The biosorption process was quick, and the equilibrium times for the above-mentioned metals were recorded as 90 and 60 min, with removal percentages of 85% and 83%, respectively. The point zero charge of algal biomass was 4.5, which indicates a negative charge on the surface of the biosorbent. The model-based assessment of the biosorption process was revealed to have followed pseudo-second-order kinetics. The adsorption isotherms for lead and cadmium achieved a best fit with the Langmuir model, with monolayer biosorption capacities of 102 and 128 mg g−1, respectively. The desorption of both metals achieved more than 70% by using HCl. The FT-IR revealed the presence of hydroxyl and amine groups on the surface of the adsorbent that are involved in the biosorption process, and morphological changes were assessed by SEM. Hence, Scenedesmus sp. from a Himalayan provenance showed considerable promise as an alternate sorbent for the treatment of heavy-metal-contaminated wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call