Abstract
In the present study, fuller's earth (FE) was modified with sodium dodecyl sulfate for removal of Acid Red 17 (AR 17) dye from aqueous solutions. The surfactant-modified FE and FE were characterized by a Fourier transform infrared spectrometer, thermogravimetric analyzer and scanning electron microscope. Batch adsorption experiments were carried out as a function of contact time, pH, initial concentration of AR 17 and adsorbent dosage. About 99.1% adsorption efficiency was achieved within 60 min at adsorbent dose of 0.1 g for initial dye concentration of 1,000 mg L-1 at pH 10. The adsorption data were well fitted with the Dubinin-Radushkevich isotherm model implying physisorption as the major phenomenon for adsorption. The kinetic data were analyzed using four kinetic equations: pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich equations. The rates of adsorption confirmed the pseudo-second-order kinetics with good correlation value (R2 = 0.999). The results indicate that the modified adsorbent can effectively be used for the removal of AR 17 from wastewater with high absorption capacity of 2164.61 mg g-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.