Abstract
Often protein folding reactions show complex kinetics, because multiple unfolded species are present, which refold simultaneously. After conformational unfolding, these species are formed by the slow cis/trans equilibrations at Xaa-Pro peptide bonds. To dissect the roles of individual prolines for unfolding and refolding, we used ribonuclease T1, a protein with two cis prolyl peptide bonds, preceding Pro39 and Pro55, and two variants with substitutions at these positions. A stopped-flow double-mixing technique was employed (i) to measure the rates of the individual prolyl isomerizations in the unfolded proteins and (ii) to study the refolding of transient species that are not well populated at equilibrium. In particular, the elusive species with correct prolyl isomers could be produced by short unfolding pulses, and its refolding kinetics could be measured. The two isomerizations in unfolded ribonuclease T1 could be assigned to Pro39 and Pro55, because they occurred with almost identical rates in the wild-type protein, in the single-cis proline variants, and in tetrapeptide-4-nitroanilides, which contained prolines in the same sequential context at Pro39 and Pro55 or ribonuclease T1. The direct refolding reaction of the unfolded molecules with correct prolyl isomers shows a time constant of 180 ms (at 25 degrees C, pH 4.6). This reaction is almost unaffected by the proline substitutions. It depends nonlinearly on temperature with a maximum near 25 degrees C, which suggest that the activated state for this reaction resembles the native rather than the unfolded state in heat capacity. The formation of a transient intermediate with incorrect prolyl isomers could be studied as well. Surprisingly, this reaction is only about 5-fold slower than direct folding, and it is also accompanied by a strong decrease in the apparent heat capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.