Abstract

We calculated an overall alpha/beta-selectivity for the pyrolysis of phenethyl phenyl ether as a composite of the alpha/beta-selectivities in the hydrogen abstraction reactions by the phenoxyl and by the benzyl radical that is in excellent agreement with experiment. The difference between the individual selectivities for these radicals is explained by analyzing the electronic structure of the transition states. Spin delocalization of the single electron favors the alpha-pathways. An opposing effect occurs for polarized transition states, such as the transition states for the hydrogen abstraction by the electrophilic phenoxyl radical, where the adjacent ether oxygen in phenethyl phenyl ether stabilizes the beta-transition states. These results indicate that theory will be able to provide excellent predictions of alpha/beta-product selectivities for more complicated lignin model compounds bearing multiple substituents. We have developed a scheme to predict alpha/beta-product selectivities in the pyrolysis of model compounds for the beta-ether linkage in lignin. The approach is based on computation of the relative rate constant, which profits from error cancellation in the individual rate constants. The Arrhenius prefactors depend strongly on the description of the low-frequency modes for which anharmonic contributions are important. We use density functional theory in combination with transition-state theory in this analysis. Diagonal anharmonic effects for individual low-frequency modes are included by employing a second-order Wigner-Kirkwood expansion in a semiclassical expression for the vibrational partition function. The composite alpha/beta-product selectivity is obtained by applying quasi-steady-state kinetic analysis for the intermediate radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call