Abstract

The linearized kinetic BGK model is used to study the steady Poiseuille flow of a rarefied gas in a long channel of rectangular cross section. The solution is constructed using the finite-volume method based on a TVD scheme. The basic computed characteristic is the mass flow rate through the channel. The effect of the relative width of the cross section is examined, and the difference of the solution from the one-dimensional flow between infinite parallel plates is analyzed. The numerical solution is compared to available results and to the analytical solution of the Navier-Stokes equations with no-slip and slip boundary conditions. The limits of applicability of the hydrodynamic solution are established depending on the degree of rarefaction of the flow and on the ratio of the side lengths of the channel cross section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.