Abstract
This paper addresses the similarities and differences in the topology of the catalytic centres of human liver cytosolic beta-glucosidase and placental lysosomal glucocerebrosidase, and utilizes well-documented reversible active-site-directed inhibitors. This comparative kinetic study was performed mainly to decipher the chemical and structural nature of the active site of the cytosolic beta-glucosidase, whose physiological function is unknown. Specifically, analysis of the effects of a family of alkyl beta-glucosides consistently displayed 100-250-fold lower inhibition constants with the cytosolic broad-specificity beta-glucosidase compared with the placental glucocerebrosidase; for example, with octyl beta-D-glucoside the Ki values were 10 microM and 1490 microM for the cytosolic and lysosomal beta-glucosidases respectively. Furthermore the higher affinity of the cytosolic beta-glucosidase than glucocerebrosidase for the amphipathic alkyl beta-D-glucosides was validated by the greater increase in the free energy of binding with increasing alkyl chain length [delta delta G0 (K,)/CH2: lysosomal enzyme, 2.01 kJ/mol (480 cal/mol); cytosolic enzyme, 3.05 kJ/mol (730 cal/mol)]. The implications of the presence of highly non-polar domains in the active site of the cytosolic beta-glucosidase are discussed with regard to its potential physiological substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.