Abstract

Purified respiratory nitrate reductase from Escherichia coli is able to use either reduced viologen dyes or quinols as the electron donor and nitrate, chlorate, or bromate as the electron acceptor. When reduced viologen dyes act as the electron donor, the enzyme follows a compulsory-order, "Theorell-Chance" mechanism, in which it is an enzyme-nitrate complex that is reduced rather than the free enzyme. In contrast, if quinols are used as the electron donor, then the enzyme operates by a two-site, enzyme-substitution mechanism. Partial proteolysis of the cytochrome b containing holoenzyme by trypsin results in loss of cytochrome b and in cleavage of one of the enzyme's subunits. The cytochrome-free derivative exhibits a viologen dye dependent activity that is indistinguishable from that of the holoenzyme, but it is incapable of catalyzing the quinol-dependent reaction. The quinol-dependent, but not the viologen dye dependent, activity is inhibited irreversibly by exposure to diethyl pyrocarbonate and reversibly by treatment with 2-n-heptyl-4-hydroxyquinoline N-oxide. We conclude that the holoenzyme has two independent and spatially distinct active sites, one for quinol oxidation and the other for nitrate reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.