Abstract

An analysis of regeneration by dilution of a covalently modified protein is presented. It is shown that, when protein regeneration is realized through the intermediacy of a protein-modifying agent adsorptive complex, the reaction is described by a summation of two exponential functions of reaction time plus a constant-term equation. The conditions whereby this equation reduces to a single-exponential equation are delineated. It is shown that, when protein regeneration is described by a single-exponential function of reaction time, the first-order protein-regeneration rate constant is a function of modifying-agent concentration and also of the microscopic reaction rate constants. Accordingly, the protein-modifying agent dissociation constant (Ki), as well as the protein-covalent-modification and -regeneration, rate constants (k+2 and K-2), may be determined by an analysis of dilution-induced protein-regeneration (or enzyme-reactivation) data obtained at different dilutions of the covalently modified protein-modifying agent preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call