Abstract
The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound-induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer's ceiling temperature (Tc ). An interesting feature of the mechanochemical breakdown of PPA is that "half-chain" daughter fragments are not observed, since the depolymerization is rapid following chain scission. These features facilitate the determination of rate constants of activation for multiple molecular weights from a single sonication experiment. Additionally, the degradation kinetics are modified with chain-end trapping agents through variation of the nature and amount of small molecule nucleophile or electrophile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.