Abstract

The role of point defect production during deformation was examined by sealing the vacancy sinks in the grain boundaries with solutes to magnify its effect upon instantaneous strain-rate changes. AA1100 aluminium sheets were thermal-mechanically treated to result in a grain size of about 25 µm and in grain boundaries that were not capable of acting as efficient vacancy sinks. Tensile tests at various temperatures ranging from 78 to 300 K showed that above 195 K, the pinning effect could be quantitatively analysed. A rate equation analysis for mono- and di-vacancy recovery was adopted to perform fits to the deduced change in flow stress with time after strain-rate change from which apparent activation energies were derived. This examination indicates that the migrating species are predominantly di-vacancies. It is concluded that point-defect atmospheres have the capacity to glide in unison with mobile dislocations and hence are sensitive to the magnitude of the strain rate and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.