Abstract

Curdlan has wide-ranging benefits in food and pharmaceutical industries for its unique rheological and thermal gelling properties. To analyze the cell growth and curdlan biosynthesis kinetics of Alcaligenes faecalis, the kinetic properties of the curdlan fermentation under different carbon sources conditions (maltose, sucrose, glucose and fructose) were investigated using Logistic and Luedeking-Piret equations. The results demonstrated that curdlan fermentation is partial growth-associated process. With maltose as the sole carbon source, the highest curdlan production (Pm = 39.3 g/L), the maximum specific growth rate (μm = 0.44/h) and the growth-associated rate constant (α = 2.05 g curdlan/g cell) were achieved. In contrast, the fructose was the less desired carbon source in both the cell growth and curdlan production. Further, the results demonstrated that slow-releasing glucose from maltose boosted cell growth and curdlan production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.