Abstract

Bio-oil derived from fast pyrolysis of lignocellulosic biomass is unstable, and aging would occur during its storage, handling, and transportation. The kinetic analysis of bio-oil aging is fundamental for the investigation of bio-oil aging mechanisms and the utilization of bio-oil as biofuels, biomaterials or biochemicals. The aging kinetic experiments of bio-oil from poplar wood pyrolysis were conducted at different aging temperatures of 303, 333, 353, and 363 K for different specified periods of time in capped glass vessels. The traditional method with two separate fittings was employed to fit experimental data, and the results indicated that the obtained kinetic parameters could not fit the experimental data well. An advanced approach for kinetic modeling of bio-oil aging has been developed by simultaneously processing experimental data at different aging temperatures and using the pattern search method. The aging kinetic model with the optimized parameters predicted the aging kinetic experimental data of the bio-oil sample very well for different aging temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.