Abstract

The engineering of reaction mixtures that ensure the solubility of inorganic salt byproducts without compromising the reactivity is a grand challenge for continuous flow manufacturing in upstream pharmaceuticals and fine chemicals process development. Aqueous cross-coupling reactions are possible solutions. We report the study of an aqueous phase Pd-catalyzed Cu-free direct arylation of an alkyne using a hydrophilic ligand towards understanding the role of water on the cross-coupling kinetics. Kinetic analyses of theoretically estimated molar flux rates and the measured reaction kinetics reveal a transition from mass transfer to kinetically controlled deprotonation and carbopalladation mechanisms. Interfacial contact areas of immiscible aqueous–organic phases control the crossover from the mass-transfer-limited to the reaction-rate-limited regime. Highly agitated batch reactors and multiphase capillary flow reactors are needed to overcome the mass transport limitations and, thus, discover the transition f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.