Abstract

This study examined the catalytic effects of Al-MCM-41 on the pyrolysis of wood plastic composite via the thermogravimetric analysis (TGA) and model-free kinetic analysis. Al-MCM-41 containing nanopores, with a high BET surface area (633 m²/g) and acidity (SiO₂/Al₂O₃:25), reduced the decomposition temperature of wood and plastic mixtures (PE and PP) in a wood-plastic composite. The average activation energy for the catalytic pyrolysis of wood plastic composite, which was calculated via a model-free kinetic analysis method (Ozawa) of TGA, was also lower at all conversions than those of non-catalytic pyrolysis. This suggests that the pores of Al-MCM-41 and its high cracking efficiency allow the effective diffusion of wood plastic composite components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call