Abstract

Tyrosinase catalyzes the oxidation of l-tyrosine in two stages to produce l-dopa and l-dopaquinone stepwise, and l-dopaquinone is subsequently converted to dopachrome. Most of the conventional analyses subjected only one-step reaction from l-tyrosine to l-dopa or from l-dopa to l-dopaquinone. In this study, kinetic analyses of two-steps oxidation of l-tyrosine with tyrosinase were made by capillary electrophoresis/dynamic frontal analysis (CE/DFA). When l-dopa was introduced into a capillary as a sample plug in a CE/DFA format, the enzymatic oxidation continuously occurred during the electrophoresis, and the product l-dopaquinone was subsequently converted to dopachrome which was detected as a plateau signal. A Michaelis-Menten constant of the second-step kinetic reaction, Km,Do, was determined as 0.45 ± 0.03 mmol L−1. In the analysis of the first-step kinetic reaction from l-tyrosine to l-dopa, l-dopa was not resolved by CE/DFA because both l-tyrosine and l-dopa are electrically neutral. The l-dopa formed and co-migrated at the l-tyrosine zone was calibrated beforehand with the final product of dopachrome detected as a plateau signal. Constantly formed l-dopa was successfully detected as a plateau signal of dopachrome, and a Michaelis-Menten constant of Km,Ty was also determined as 0.061 ± 0.009 mmol L−1 by the CE/DFA. CE/DFA is applicable to two-steps enzymatic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.