Abstract

The characteristics of kinetic Alfvénic cnoidal waves (KACWs) in Saturn's magnetosphere plasma composed of two temperature superthermal electrons and inertial ions are presented. The Korteweg–de Vries (KdV) equation and its cnoidal wave solution are derived by adopting reductive perturbation technique. Only positive potential kinetic Alfvénic cnoidal and solitary waves are evolved in Saturnian magnetospheric plasma. The influence of superthermality of cold electrons, concentration of hot electrons, plasma beta and angle of propagation of the wave with respect to the magnetic field has been analyzed on the characteristics of KACWs. The findings of this investigation may shed the light on the possible existence of KACWs and acceleration as well as energy transportation in space plasmas especially in Saturn's magnetosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.