Abstract

Autonomic computing - self-configuring, self-healing, self-optimizing applications, systems and networks - is widely believed to be a promising solution to ever-increasing system complexity and the spiraling costs of human system management as systems scale to global proportions. Most results to date, however, suggest ways to architect new software constructed from the ground up as autonomic systems, whereas in the real world organizations continue to use stovepipe legacy systems and/or build ''systems of systems'' that draw from a gamut of new and legacy components involving disparate technologies from numerous vendors. Our goal is to retrofit autonomic computing onto such systems, externally, without any need to understand or modify the code, and in many cases even when it is impossible to recompile. We present a meta-architecture implemented as active middleware infrastructure to explicitly add autonomic services via an attached feedback loop that provides continual monitoring and, as needed, reconfiguration and/or repair. Our lightweight design and separation of concerns enables easy adoption of individual components, as well as the full infrastructure, for use with a large variety of legacy, new systems, and systems of systems. We summarize several experiments spanning multiple domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.