Abstract

Intermuscular coherence can identify oscillatory coupling between two electromyographic (EMG) signals, measuring common presynaptic drive to motor neurons. Beta band oscillations (15-30 Hz) are hypothesized to originate largely from primary motor cortex, and are reduced during dynamic relative to static motor tasks. It has yet to be established whether motor imagery modulates beta intermuscular coherence. Using visual feedback, 10 unimpaired participants completed eighteen trials of pinching their right thumb and index finger at a constant force. During the 60-second trials, participants simultaneously engaged in one of three types of kinesthetic imagery: the right thumb and index finger executing a constant force pinch (static), the fingers of the right hand sequentially flexing and extending (dynamic), and the right foot pushing down with constant force (foot). Motor imagery of a dynamic motor task resulted in significantly lower intermuscular beta coherence than imagery of a static motor pinch task, without any difference in task performance or root-mean-square EMG. Thus, motor imagery affects intermuscular coherence in the beta band, even while measures of task performance remain constant. This finding provides insight for incorporation of beta band intermuscular coherence in future motor rehabilitation schemes and brain computer interface design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.