Abstract

Both the development and the maintenance of neurons require a great deal of active cytoplasmic transport. Much of this transport is driven by microtubule motor proteins. Membranous organelles and other macromolecular assemblies bind motor proteins that then use cycles of adenosine 5'-triphosphate hydrolysis to move these 'cargoes' along microtubules. Different sets of cargoes are transported to distinct locations in the cell. The resulting differential distribution of materials almost certainly plays an important part in generating polarized neuronal morphologies and in maintaining their vectorial signalling activities. A number of different microtubule motor proteins function in neurons; presumably they are specialized for accomplishing different transport tasks. Questions about specific motor functions and the functional relationships between different motors present a great challenge. The answers will provide a much deeper understanding of fundamental transport mechanisms, as well as how these mechanisms are used to generate and sustain cellular asymmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.