Abstract

Kinesin family member C1 (KIFC1) is a kinesin-14 motor protein, and its abnormal upregulation promotes the malignant behavior of cancer cells. N6-methyladenosine (m6A) RNA methylation is a common modification of eukaryotic messenger RNA and affects RNA expression. In this study, we explored how KIFC1 regulated head and neck squamous cell carcinoma (HNSCC) tumorigenesis and how m6A modification affected KIFC1 expression. A bioinformatics analysis was performed to screen for genes of interest, and in vitro and in vivo studies were carried out to investigate the function and mechanism of KIFC1 in HNSCC tissues. We observed that the expression of KIFC1 in HNSCC tissues was significantly higher than that in normal or adjacent normal tissues. Patients with cancer with higher KIFC1 expression have a lower tumor differentiation status. Demethylase alkB homolog 5, a cancer-promoting factor in HNSCC tissues, could interact with KIFC1 messenger RNA and posttranscriptionally activate KIFC1 through m6A modification. KIFC1 downregulation suppressed HNSCC cell growth and metastasis in vivo and in vitro. However, overexpression of KIFC1 promoted these malignant behaviors. We demonstrated that KIFC1 overexpression activated the oncogenic Wnt/β-catenin pathway. KIFC1 interacted with the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1) at the protein level and increased its activity. The Rho GTPase Rac1 was indicated to be an upstream activator of the Wnt/β-catenin signaling pathway, and its Rac1 inhibitor, NSC-23766, treatment reversed the effects caused by KIFC1 overexpression. Those observations demonstrate that abnormal expression of KIFC1 may be regulated by demethylase alkB homolog 5 in an m6A-dependent manner and promote HNSCC progression via the Rac1/Wnt/β-catenin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call