Abstract

Kinesin family member 3A (KIF3A) plays a crucial role in the carcinogenesis of different types of human cancer. The present study aimed to identify the role of KIF3A in the carcinogenesis of non-small cell lung cancer (NSCLC). KIF3A protein expression was determined in 163 patients with NSCLC using immunohistochemistry staining. The prognosis of patients with NSCLC was determined using Kaplan-Meier survival and Cox regression analyses. The function of KIF3A on the carcinogenesis and metastasis of NSCLC was determined in vitro. Furthermore, a protein-protein interaction (PPI) network of KIF3A was constructed and the potential interacting molecules were identified using bioinformatic analysis. The protein expression levels of KIF3A were significantly lower in the NSCLC tissues compared with that in the adjacent tissues, and low KIF3A expression level was associated with unfavorable survival outcomes in patients with NSCLC. Furthermore, KIF3A knockdown increased proliferation, invasion and metastasis, and inhibited apoptosis of NSCLC cells. KIF3A was demonstrated to interact with intraflagellar transport 57 (IFT57) in the PPI network. In addition, validation analyses indicated that KIF3A mRNA expression levels were positively correlated with IFT57 mRNA expression levels in clinical NSCLC samples and NSCLC cell lines. Taken together, the results of the present study suggested that KIF3A is a key tumor suppressor gene for carcinogenesis and metastasis of NSCLC, it may also function as a biomarker and interacts with IFT57 in the progression of NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call