Abstract

Inhibition of kinesin-5, a mitotic motor protein also expressed in neurons, causes axons to grow faster as a result of alterations in the forces on microtubules (MTs) in the axonal shaft. Here, we investigate whether kinesin-5 plays a role in growth-cone guidance. Growth-cone turning requires that MTs in the central (C-) domain enter the peripheral (P-) domain in the direction of the turn. We found that inhibition of kinesin-5 in cultured neurons prevents MTs from polarizing within growth cones and causes them to grow past cues that would normally cause them to turn. We found that kinesin-5 is enriched in the transition (T-) zone of the growth cone and that kinesin-5 is preferentially phosphorylated on the side opposite the invasion of MTs. Moreover, when a growth cone encounters a turning cue, phospho-kinesin-5 polarizes even before the growth cone turns. Additional studies indicate that kinesin-5 works in part by antagonizing cytoplasmic dynein and that these motor-driven forces function together with the dynamic properties of the MTs to determine whether MTs can enter the P-domain. We propose that kinesin-5 permits MTs to selectively invade one side of the growth cone by opposing their entry into the other side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.